Toponium Phenomenology at the LHC

Ya-Juan Zheng
University of Kansas

November 3, 2021
Brookhaven Forum 2021:Opening New Windows to the Universe (BF2021)

Outline

- Toponium
- Production of toponium at the LHC
- 'Reconstruction' of t and t̄
- Observables of toponium decay at the LHC

Top pair production at the LHC

• LHC is a top factory. At 13 TeV, with 140/fb of integrated luminosity, we expect about 100 million tt events and 5 million are dileptonic ones.

- Both ATLAS and CMS observed excess of Data over the 'SM' prediction at low m(II') bins.
 - This may suggest that tt production near the threshold is underestimated in the 'SM' prediction
 - ◆ Could it be a signal of toponium formation near the tt threshold?

Heavy quarkonium

	spin triplet (J=1)	spin singlet (J=0)
cc (charmonium)	J/ψ, ψ(2S)	$\eta_{ extsf{c}}$
bb (bottomonium)	Υ,Υ(2S),Υ(3S), Υ(4S),Υ(5S)	$\eta_{ m b},\eta_{ m b}(2{ m S})$
t t (toponium)	θ _t (C=-)	η_{t} (C=+)
e+e- (positronium)	ortho-positronium ${}^3S_1 \rightarrow \gamma \gamma \gamma (C=-)$	para-positronium ${}^{1}S_{0} \rightarrow YY (C=+)$

Toponium: Color singlet bound state of top&anti-top quark J=1 Spin triplet θ_t J=0 Spin singlet η_t

$$\vec{S} = \vec{S}_t + \vec{S}_{\overline{t}}$$
 $S_z = S_{t,z} + S_{\overline{t},z}$

Space time evolution of toponium formation and decay

- Top quark decays before hadronization
- ◆ Toponium forms before top decay

t and \bar{t} spin polarisation in J^{PC}=0⁻⁺ toponium η_t

$$|\eta_t\rangle = \frac{|\uparrow\rangle_t |\downarrow\rangle_{\bar{t}} - |\downarrow\rangle_t |\uparrow\rangle_{\bar{t}}}{\sqrt{2}}$$

$$\left(\cos \frac{\bar{\theta}}{2} \cos \frac{\theta}{2} \right)^2$$

$$= \frac{1 + \cos \bar{\theta}}{2} \frac{1 + \cos \theta}{2}$$

$$= 1 \qquad \text{when } \theta = \bar{\theta} = 0$$

$$+ \left(\sin\frac{\bar{\theta}}{2}\sin\frac{\theta}{2}\right)^{2}$$

$$= \frac{1 - \cos\bar{\theta}}{2} \frac{1 - \cos\theta}{2}$$

$$= 1 \quad \text{when } \theta = \bar{\theta} = \pi$$

$$l^{-\downarrow}\downarrow l^{+}$$

Toponium production at hadron colliders

tt̄ in color octet

- The colour-singlet dominates at the threshold
 - the gg-singlet channel dominates
- ❖ The J=0 state dominates
 - · L=S=0
- The toponium η_t couples to 2 gluons and tops

Toponium production cross section at the LHC

\sqrt{s}	$\sigma(\eta_t)$ [pb]	$\sigma(t\bar{t})$ [pb]	Ratio
7 TeV	1.55	172	0.0090
8 TeV	2.19	246	0.0089
13 TeV	6.43	810	0.0079
14 TeV	7.54	954	0.0079

- Cross section of η_t at 7 and 14 TeV are from [Y. Sumino and H. Yokoya, JHEP2010]
- ◆ Cross section of tt from [M Czakon, P.Fiedler and A.Mitov PRL2013, M.Czakon, A. Ferroglia, D.Heymes, A.Mitov, B.Pecjak, X.Wang, and L.Yang JHEP 2018]

Near threshold

$$\left[(E + i\Gamma_t) - \left\{ -\frac{\nabla^2}{m_t} + V_{\text{QCD}}^{(c)}(r) \right\} \right] \tilde{G}^{(c)}(E + i\Gamma_t, \vec{r}) = \delta^3(\vec{r})$$

$$G^{(c)}(E+i\Gamma_t,\vec{p}) = \int d^3\vec{r} \, e^{-i\vec{p}\cdot\vec{r}} \, \tilde{G}^{(c)}(E+i\Gamma_t,\vec{r})$$

evaluated by using Green's function of the non-relativistic Hamiltonian with Coulomb potential. [V.S.Fadin and V.A.Khoze (JETP1987) (Sov. J. Nucl. Phys1988)]

 $|M|^2 \to |M|^2 \left| \frac{G(E; p^*)}{G_0(E; p^*)} \right|^2$

[Y.Sumino and H.Yokoya, JHEP2010]

6-body correlation in toponium (η_t) decay

$$M(\eta_t \to t + \bar{t} \to b\bar{l}\nu + \bar{b}l\bar{\nu})$$

$$= \sum_{\sigma,\bar{\sigma}} M(\eta_t \to t(\sigma) + \bar{t}(\bar{\sigma})) M(t(\sigma) \to b\bar{l}\nu) M(t(\bar{\sigma}) \to \bar{b}l\bar{\nu})$$

$$= \sum_{\sigma,\bar{\sigma}} M(t\bar{t})_{\sigma,\bar{\sigma}} M(t)_{\sigma} M(\bar{t})_{\bar{\sigma}}$$

$$\left| M(\eta_{t} \to t + \bar{t} \to b\bar{l}\nu + \bar{b}l\bar{\nu}) \right|^{2}$$

$$= \left| \sum_{\sigma,\bar{\sigma}} M(t\bar{t})_{\sigma,\bar{\sigma}} M(t)_{\sigma} M(\bar{t})_{\bar{\sigma}} \right|^{2}$$

$$= \sum_{\sigma,\bar{\sigma},\sigma',\bar{\sigma'}} M(t\bar{t})_{\sigma,\bar{\sigma}} M(t)_{\sigma} M(\bar{t})_{\bar{\sigma}} M(t\bar{t})_{\sigma',\bar{\sigma'}}^{*} M(t)_{\sigma'}^{*} M(\bar{t})_{\bar{\sigma'}}^{*}$$

$$= \sum_{\sigma,\bar{\sigma},\sigma',\bar{\sigma'}} M(t\bar{t})_{\sigma,\bar{\sigma}} M(t\bar{t})_{\sigma',\bar{\sigma'}}^{*} M(t)_{\sigma} M(t)_{\sigma'}^{*} M(\bar{t})_{\bar{\sigma}} M(\bar{t})_{\bar{\sigma'}}^{*}$$

$$= \sum_{\sigma,\bar{\sigma},\sigma',\bar{\sigma'}} \rho(\eta_{t} \to t\bar{t})_{\sigma,\bar{\sigma},\sigma',\bar{\sigma'}} \rho(t \to b\bar{l}\nu)_{\sigma,\sigma'} \rho(\bar{t} \to b\bar{l}\bar{\nu})_{\bar{\sigma},\bar{\sigma'}}$$

The above correlation can be reproduced by a pseudo-scalar η_t model:

$$\mathcal{L}_{\eta_t} = \frac{1}{2} \partial_{\mu} \phi_{\eta_t} \partial^{\mu} \phi_{\eta_t} - \frac{1}{2} m_{\eta_t} \phi_{\eta_t}^2 - \frac{1}{4} g_{gg\eta_t} \phi_{\eta_t} G_{\mu\nu}^a \tilde{G}^{a\mu\nu} - i g_{tt\eta_t} \phi_{\eta_t} \bar{t} \gamma_5 t$$

Distributions

Cut	$tar{t}$	Toponium	Ratio
Initial	113,000,000	900,000	0.0079
Di-lepton	5,160,000	41,000	0.0079
$p_T, \eta , \Delta R$	1,370,000	10,300	0.0075
$\Delta arphi_{ar\ell\ell'}$	178,000	4,060	0.023
$m_{ar\ell\ell'}$	77,000	2,760	0.036
$m_T(ar{\ell}\ell'bar{b}; u_\ellar{ u}_{\ell'})$	40,800	2,460	0.060
$t\bar{t}$ kinematical fit	20,400	1,420	0.070

kinematical reconstruction of t and t

2 neutrinos

- ♦ 8 variables (4-mom.)
- → -2 from neutrino mass
- → -2 from W mass
- → -2 from top mass
- ♦ -2 assuming $\vec{p}_t^T = \vec{p}_{\bar{t}}^T$

t and \bar{t} can be reconstructed since the t and \bar{t} momentum p in the $t\bar{t}$ rest frame is small (\leq 20 GeV). By assuming $\vec{p}_{t}^{T} = \vec{p}_{\bar{t}}^{T}$ for the selected events, we can reconstruct t and \bar{t} .

Prediction

It tells that t and t have similar momentum in the pp collision frame.

 $ly_{t}-y_{\bar{t}}l$ should also be small for the toponium events.

Toponium contribution can enhance the cross section by 10% near |∆y|=0.